Analysis of Hot Melt Adhesive Caking in Summer: Polyethylene Wax Optimization and High-Melting-Point Alternatives

banner
Analysis of Hot Melt Adhesive Caking in Summer: Polyethylene Wax Optimization and High-Melting-Point Alternatives
07 24, 2025

Cause Analysis

The caking issue caused by using 105°C low-melting-point polyethylene (PE) wax in hot melt adhesives (HMAs) results from the combined effects of: 

1. Narrow temperature window in formulation 

2. Uncontrolled wax migration/crystallization 

3. Mismatched process conditions

 

I.               Core Issue: Critical Failure of 105°C PE Wax

Parameter 

Conventional HMA         

HMA with 105°C PE Wax   

Risk

Processing Temperature 

150–180°C               

Reduced to 120–130°C    

Poor heat transfer → Incomplete melting                             

ΔT (Process - MP)

>50°C above MP          

Only 15–25°C above MP   

Marginal melt fluidity → Flow instability

Cooling Rate          

Normal solidification (>70°C)

Crystallizes at 90–100°C

Premature hardening → Nozzle clogging                               

 

II.             Four Direct Causes of Caking

1. Insufficient Processing Temperature → Microcrystalline Residues

   - 105°C wax requires ≥120°C for full melting, but glue gun temperature fluctuations (<115°C) leave unmelted "seed crystals" that grow into solid blocks. 

 

2. Wax-Resin Compatibility Failure → Surface Wax Bleeding 

   - Low-MP wax (MW 2,000–5,000) migrates to metal gun walls, forming insulating layers that trap semi-molten adhesive. 

 

3. Short Open Time → Nozzle Freezing

   - 105°C wax crystallizes at 90–100°C (vs. <70°C for standard wax). Rapid air cooling (25°C) creates a "sandwich" of hardened outer layers. 

 

4. Moisture Sensitivity

   - Branched chains in low-MP wax absorb moisture, accelerating crystallization (water acts as a nucleating agent) and hydrolyzing EVA → Foaming expansion → Cement-like caking. 

 

III.            Process Evidence Chain (Customer-Verifiable)

Observation 

Cause                    

Verification Method                    

Layered caking str

Wax bleeding-crystallization cycles

Cross-section inspection under UV light

Brittle, glossy caking     

Wax-rich surface layer        

Local heating to extract oily wax

Clogging only in rear gun section

Incomplete front-end melting

Infrared thermometry of gun zones      

Higher caking in summer    

Higher caking in summer    

Compare unopened glue sticks by season 

 

IV.           Is PE Wax Causing Problem?

Scenario

PE Wax Linkage              

Solution   

Glue sticks overly hard/brittle  

Excessive wax content       

Reduce wax % or switch type           

Gritty texture after heating     

Poor-quality wax            

Clean gun; replace wax               

Yellowing/bubbling               

Oxidized/hygroscopic wax    

Improve storage (vacuum + desiccant) 

Internal gun clogging only       

Oxidation/hydrolysis        

Deep-clean gun with terpene solvent  

 

V.             Solutions: Three-Pronged Optimization

 

1.     Formulation Adjustments

Issue  

Action

Effect 

Wax crystallization   

Add 0.3–0.5% sorbitan monooleate     

Suppresses crystal growth               

Poor compatibility    

Blend 5–8% maleic anhydride-grafted POE

Anchors wax molecules                  

Moisture sensitivity  

Add 0.2% carbodiimide                 

Terminates EVA hydrolysis              

Summer caking         

Switch to high-MP PE wax (110–120°C) or composite (70% high-MP wax + 30% oxidized wax/5% SEBS)

Ensures complete melting; reduces residues

 

 

2.     Process Resets

- Gun temperature: Increase from 120°C to 135±3°C (verify adhesive stability) 

- Extrusion pressure: Higher gear ratio → Mechanical crystal disruption 

- Shutdown protocol: 

  - Purge for 30 sec before stopping 

  - Soak nozzle in silicone oil 

 

3.     Storage/Usage Rules 

- Opened glue sticks: ≤72-hour shelf life (sealed container + desiccant) 

- Environment: Halt work if >32°C or >70% RH 

- Gun cleaning: Terpene solvent backflush every 8 hours 

- Packaging: Vacuum aluminum foil + built-in desiccant 

 

VI.           Alternative Solutions: Cost-Benefit Comparison

Solution 

Caking Resolution

Cost Increase

Adaptability  

110°C Fischer-Tropsch wax

85%             

+15%         

Requires higher gun power       

Wax crystal inhibitor

70%

+8%          

Works with existing equipment   

Wax-free POE-based formula

>95%            

+30%         

Full process adjustment needed  

110–120°C PE wax

83%

+10–20%      

Requires gun temp ↑ to 135–140°C + packaging upgrades

 

Recommendation: Start with formulation tweaks + process adjustments for quick wins, then evaluate long-term Fischer-Tropsch wax adoption. 

 

Key Conclusion

The caking induced by 105°C PE wax stems from thermodynamic imbalance—its narrow melting-crystallization window (<15°C) cannot tolerate standard HMA equipment variations. Short-term fixes involve crystallization inhibitors + higher processing temps, but long-term stability requires high-MP wax substitution or wax-free systems. 

 


Share:
Inquire now